Практические советы Витальное окрашивание Прижизненное окрашивание Домашняя лаборатория Занимательная микроскопия Изготовление микропрепаратов Камера Горяева Классификация и маркировка объективов микроскопов Комбинации цветных стекол для выделения спектра Методы микроскопирования Методы исследования простейших Методы и приемы биологического эксперимента Микроскопия для начинающих Микроскопические измерения Модификации контрастной окраски по Граму Необходимое оборудование Общие методы заключения препаратов Организация и оснащение гистологической лаборатории Освещение по Келлеру Подготовка предметных стекол Поляризационная микроскопия Правила работы с микроскопом Правила ведения лабораторного журнала Приобретение микроскопа Приготовление микропрепаратов членистоногих Техника приготовления гистологических препаратов Фототубус для цифровых камер Формидрон инструкция по применению


Поляризационная микроскопия в гистологии


Поляризационная микроскопия — один из высокоэффективных методов морфологического исследования, обладающий широкими возможностями идентификации биологических структур, что в сочетании с доступностью и относительной простотой обусловливает его высокую ценность. Метод позволяет познавать не только тонкости гистологического строения объекта, но и некоторые его гистохимические параметры, а в некоторых аспектах — и ультраструктурные особенности. Недаром в 40 —50-х годах XX в. поляризационную микроскопию относили к ультраструктурным методам.

Поляризационная микроскопия предназначена для изучения свойств гистологических структур, обладающих способностью двоякого лучепреломления (анизотропия) — раздвоения светового луча при прохождении его через анизотропную среду. Световая волна в анизотропной среде распадается на две волны с взаимно перпендикулярными плоскостями колебаний электромагнитных волн. Эти плоскости называются плоскостями поляризации. Поляризованный свет отличается от обычного (неполяризованного) тем, что в последнем колебания световых волн происходят в различных плоскостях, а в поляризованном свете — лишь в определенной плоскости.

Для создания эффекта поляризации в поляризационном микроскопе имеются два поляризационных фильтра, один из которых, помещаемый между источником освещения и гистологическим объектом, называется поляризатором, а другой, находящийся между гистологическим объектом и глазом исследователя, — анализатором. И поляризатор, и анализатор в оптическом отношении представляют собой совершенно одинаковые поляризационные фильтры, поэтому их можно менять местами. Ранее для поляризационной микроскопии применяли изготавливаемые из исландского шпата призмы Николя, Аренса или Томсона. У этих призм ограничен угол преломления света. В настоящее время вместо них используют плоские поляризационные фильтры, продуцирующие широкопольный поляризованный свет.


В создании поляризованного света определяющую роль играет взаимное расположение поляризатора и анализатора относительно оптической оси микроскопа. Если они ориентированы таким образом, что тот и другой пропускают поляризованный свет в одной и той же плоскости, т.е. при совпадении их плоскостей поляризации, оба поляризационных фильтра способны пропускать поляризованный свет; поле зрения микроскопа при этом светлое (рис. 1,а).


Если же плоскости поляризации поляризационных фильтров взаимно перпендикулярны (этого достигают путем поворота анализатора на 90° вокруг оптической оси микроскопа), то поляризованный свет не проходит и исследователь видит темное поле зрения (рис. 1,б). При повороте поляризатора на 360° в процессе его вращения поле зрения дважды полностью затемнено и дважды полностью просветлено. В прошлом применяли фильтры Бернауэра, при использовании которых затемненное поле зрения имеет красноватый оттенок. При применении черных зеркальных фильтров затемненное поле зрения выглядит не полностью темным, а слабо подсвеченным.

В тех случаях, когда при скрещенном положении поляризационных фильтров (т.е. в темном поле зрения) на пути поляризованного света встречаются анизотропные субстанции, содержащиеся, например, в гистологическом препарате, эти субстанции, точно так же, как и поляризационные фильтры, расщепляют поляризованный свет на два луча с взаимно перпендикулярными плоскостями колебаний световых волн. Световые лучи с плоскостью колебаний, совпадающей с плоскостью поляризации, проходят через анализатор, а с перпендикулярной — абсорбируются, вследствие чего интенсивность светового потока, попадающего в глаз исследователя, составляет лишь половину  интенсивности исходного светового пучка. В результате описанных процессов анизотропные субстанции, находящиеся между двумя скрещенными поляризаторами, видны на темном фоне в виде светлых светящихся объектов. При этом изотропные структуры, не обладающие способностью двоякого лучепреломления, остаются темными. В биологических тканях имеется достаточное количество структур, дающих эффект двоякого лучепреломления, — это элементы сократительного аппарата мышц, коллагеновые образования, некоторые липиды, ряд кристаллов и др.

Расщепленные в анизотропном объекте и проходящие через анализатор световые лучи характеризуются неодинаковой скоростью распространения волн. В зависимости от величины этой разницы (ее еще называют величиной задержки светового луча) и от различий абсорбции света в анализаторе свечение анизотропных объектов может быть белым или цветным. В последнем случае речь идет о феномене дихроизма (двойная абсорбция). Цветовые эффекты при исследовании в поле поляризации дают, например, многие кристаллы.

Процесс двоякого лучепреломления может быть значительно усилен путем применения определенных красителей, молекулы которых обладают способностью ориентированно откладываться на анизотропных структурах. Гистохимические реакции, в результате которых возникает эффект анизотропии, были названы G. Romhanyi топооптическими реакциями. Различают две разновидности таких реакций — аддитивные и инверсивные. При аддитивных реакциях задержка светового луча увеличивается, что называют положительной анизотропией, при инверсивных реакциях она уменьшается — отрицательная анизотропия.


АППАРАТУРА И ОБОРУДОВАНИЕ

Поляризационную микроскопию проводят с помощью специальных поляризационных микроскопов. В качестве примера можно назвать отечественные микроскопы МП-1, МП-2, МПД-1. Большинство современных световых микроскопов оснащено приспособлениями, позволяющими проводить поляризационную микроскопию.

Для поляризационной микроскопии можно приспособить любой световой микроскоп. Достаточно иметь два поляризационных фильтра, один из которых, выполняющий функцию поляризатора, помещают между источником света и препаратом, а другой, играющий роль анализатора,— между препаратом и глазом исследователя. Поляризатор обычно вставляют под конденсор микроскопа в оправу светофильтра, а анализатор — в окуляр. В бинокулярных микроскопах анализатор размещают над объективом. При использовании монокулярных и бинокулярных микроскопов с наклонным тубусом следует иметь в виду, что поляризующие свойства поляризатора могут нейтрализоваться эффектом отражения в призме. Для того чтобы устранить этот побочный эффект, нужно повернуть поляризатор в условиях затемненного поля зрения таким образом, чтобы красноватый оттенок поля зрения сменился зеленоватым. В этой позиции достигается максимальное гашение отраженного света. Влияние, призмы можно полностью устранить, если разместить анализатор непосредственно над объективом под призмой.

На рис. 2 представлена принципиальная схема поляризационного микроскопа. Помимо общих для всех световых микроскопов компонентов, в поляризационном микроскопе имеется два поляризационных фильтра (поляризатор, размещаемый обычно под конденсором, и анализатор, находящийся в окуляре), а также компенсатор. Один из поляризационных фильтров должен обязательно вращаться, причем для определения степени вращения необходима соответствующая градуированная шкала.

В поляризационном микроскопе используется источник освещения, обеспечивающий высокую плотность светового пучка. В качестве такого источника рекомендуют применять лампу мощностью 100 Вт при напряжении 12 В. Для некоторых видов исследования требуется монохроматический свет. С этой целью используют металлический интерференционный фильтр, который лучше поместить над зеркалом [Scheuner G., Hutschenre-iter J., 1972]. Рассеивающее свет матовое стекло помещают перед поляризатором, т.е. между ним и источником освещения, но ни в коем случае не после поляризатора, так как при этом нарушается функция поляризационного фильтра.

В поляризационном микроскопе используют только ахроматические, а не апохроматические объективы и не флюоритные стекла. Апохроматические объективы можно применять лишь в тех случаях, когда требуется нормальная цветопередача при микрофотографировании [Appelt Н., 1955].

Поляризационные микроскопы оснащены вращающимся предметным столиком, положение которого относительно оптической оси можно менять. Угол поворота столика измеряют с помощью градусной шкалы, нанесенной по его окружности. Одним из обязательных условий, обеспечивающих эффективное применение поляризационной микроскопии, является тщательная центровка вращающегося предметного столика с помощью центровочных винтов.

Важным элементом поляризационного микроскопа является компенсатор, помещаемый между объективом и анализатором, обычно в тубусе микроскопа. Компенсатор представляет собой пластинку, изготавливаемую из особых сортов гипса, кварца или слюды. Он позволяет измерять разницу хода расщепленных световых лучей, выражающуюся в нанометрах. Функционирование компенсатора обеспечивается его способностью изменять разницу хода световых лучей, низводя ее до нуля либо увеличивая до максимума. Это достигается вращением компенсатора вокруг оптической оси.


МЕТОДИКА МИКРОСКОПИИ В ПОЛЯРИЗОВАННОМ СВЕТЕ

Поляризационную микроскопию удобнее проводить в затемненном помещении, так как интенсивность светового потока, попадающего в глаз исследователя, уменьшается в 2 раза по сравнению с исходной. После включения осветителя микроскопа вначале добиваются максимально яркого освещения поля зрения путем вращения поляризатора или анализатора. Такое положение поляризационных фильтров соответствует совпадению их плоскостей поляризации. Препарат помещают на предметный столик и изучают его сначала в светлом поле. Затем путем вращения поляризатора (или анализатора) максимально затемняют поле зрения; эта позиция фильтра соответствует перпендикулярному расположению плоскостей поляризации. Для того чтобы выявить эффект анизотропии, нужно совместить плоскость поляризации анизотропного объекта с плоскостью поляризованного света. Эмпирически этого добиваются путем вращения предметного столика вокруг оптической оси. Если для поляризационной микроскопии используют световой микроскоп, не оборудованный вращающимся столиком, то приходится вращать гистологический препарат вручную. Это допустимо, однако в таком случае нельзя проводить отдельные виды поляризационной микроскопии, требующие количественной оценки (определение знака двоякого лучепреломления, величины разницы хода световых лучей).

В том случае, если анизотропные объекты в исследуемом препарате расположены упорядоченно (например, анизотропные диски поперечнополосатых мышечных волокон), их удобно изучать в фиксированном положении предметного столика, при котором эти объекты дают максимальное свечение на темном фоне. Если же анизотропные структуры располагаются в препарате хаотично (например, кристаллы), то при их исследовании приходится постоянно вращать предметный столик, добиваясь свечения той или иной группы объектов.

Для проведения более углубленного анализа и оценки топо-оптических реакций необходимо знать методику определения относительного знака двоякого лучепреломления, величины разницы хода лучей и индекса (коэффициента) лучепреломления.

Знак двоякого лучепреломления характеризует степень и направление смещения хода световых лучей, проходящих через анализатор. Это смещение вызывается топооптическими красителями, и в том случае, если оно направлено в сторону уменьшения разницы хода лучей, говорят об отрицательном знаке двоякого лучепреломления (отрицательная анизотропия), если же оно способствует увеличению разницы хода лучей, то констатируют положительный знак двоякого лучепреломления (положительная анизотропия). Если разница хода лучей исчезает, то эффект анизотропии нивелируется.

Знак двоякого лучепреломления определяют с помощью компенсатора. Процедура его применения заключается в следующем. Исследуемый объект помещают в положение, при котором в темном поле зрения достигается максимальное свечение анизотропных структур. Пластинку RI-компенсатора поворачивают вокруг оптической оси под углом +45° по отношению к плоскости поляризации анализатора. Объект в зависимости от разницы хода световых лучей, которая может колебаться от 20 до 200 нм, приобретает либо голубую, либо желтую окраску. В первом случае знак двоякого лучепреломления положительный, во втором — отрицательный. Следует иметь в виду, что в том случае, когда компенсатор расположен под углом +45°, общий фон затемненного поля зрения имеет красный оттенок.

Можно использовать также компенсатор /4. Процедура его применения такая же, только поле зрения имеет не красный, а серый оттенок, и объект при положительном знаке лучепреломления светится, а при отрицательном — затемнен.

Количественное определение разницы хода световых лучей, выражаемой в нанометрах, осуществляют с помощью компенсатора Брака Келера. Для этого используют формулу:



где  — константа, проставляемая на компенсаторе заводом-изготовителем, — угол поворота компенсатора относительно плоскости поляризации анализатора.

Индекс лучепреломления анизотропного объекта определяют путем его сопоставления (под микроскопом) с тест-объектом, помещаемым рядом. В качестве тест-объектов используют стандартные жидкости с известным индексом лучепреломления. Объект и образец помещают рядом на предметном столике. При несовпадении их коэффициентов преломления между объектом и образцом видна светлая линия, называемая линией Бека. Подъем тубуса микроскопа относительно сфокусированного положения вызывает смещение линии Бека в сторону среды, дающей более выраженный эффект лучепреломления. При совпадении коэффициентов лучепреломления объекта и образца линия Бека исчезает. Обычно коэффициент лучепреломления определяют в монохроматическом свете для натриевой линии спектра (при длине волны 589 нм и температуре 20 °С). Лучепреломление бледует, .определять для двух взаимно перпендикулярных плоскостей поляризации. С этой целью снимают анализатор и регистрируют лучепреломление объекта в его двух взаимно перпендикулярных положениях. Разница между обоими показателями лучепреломления (ng — nk) характеризует силу лучепреломления.


ОСОБЕННОСТИ ОБРАБОТКИ МАТЕРИАЛА И ПРИГОТОВЛЕНИЯ ПРЕПАРАТОВ

Фиксация материала для поляризационной микроскопии в кис¬лом формалине нежелательна, так как формалиновый пигмент, образующийся при взаимодействии гемоглобина тканей с кис¬лым формальдегидом, обладает анизотропными свойствами и за¬трудняет изучение препаратов в поляризованном свете. G. Scheu-ner и J. Hutschenreiter (1972) рекомендуют использовать с этой целью 10 % нейтральный формалин, раствор кальций-формола по Бейкеру, жидкость Карнуа.

Продолжительность фиксации в 10 % нейтральном формали¬не 24 — 72 ч при 4 °С, в растворе кальций-формола по Бейкеру — 16 — 24 ч при 4 °С. Фиксация в кальций-формоле особенно пред¬почтительна при исследовании липидно-белковых соединений. Жидкость Карнуа быстро пропитывает ткани. Кусочки толщи¬ной 1 — 2 мм бывают профилированы уже через 1 ч при темпе¬ратуре 4 °С. Для исследования липидов фиксация в жидкости Карнуа непригодна. Кроме того, применяют жидкость Ценкера, особенно при импрегнации солями золота и серебра. После обра¬ботки смесью жидкости Ценкера и уксусной кислоты эритроци¬ты приобретают способность к двоякому лучепреломлению.

При исследовании в поляризационном микроскопе плотных тканей (кости, зубы), помимо кислотной декальцинации, необхо¬дима дополнительная обработка для удаления коллагеновых во¬локон. С этой целью шлифы таких тканей в течение нескольких минут варят в смеси глицерина и гидроксида калия (10 мл глице¬рина и 2 крупинки гидроксида калия) до полного побеления, затем осторожно сливают щелочь, шлиф промывают в воде и переносят с помощью пинцета на предметный столик микроскопа.

Для поляризационной микроскопии используют парафино¬вые, замороженные и криостатные срезы. Неокрашенные замо¬роженные срезы для изучения в поляризованном свете заключа¬ют в глицерин. Нефиксированные криостатные срезы пригодны для поляризационно-микроскопического анализа сразу после приготовления. В связи с их высокой чувствительностью к по¬вреждающему действию различных факторов внешней среды эти срезы все же рекомендуют фиксировать в 10 % нейтральном формалине или растворе кальций-формола.

На результаты поляризационной микроскопии оказывает вли¬яние толщина гистологических срезов. При исследовании толс¬тых срезов создаются условия для наложения разных анизотроп¬ных структур друг на друга. Кроме того, при разной толщине срезов могут меняться анизотропные свойства изучаемых струк¬тур, поэтому очень важно, особенно при сравнительных исследо¬ваниях, обеспечивать постоянную толщину срезов. Рекомендуе¬мая максимальная толщина срезов не должна превышать 10 мкм.

Еще одним обязательным условием является тщательное депарафинирование срезов, так как не удалённые остатки парафи¬на дают выраженный эффект анизотропии, затрудняя исследо¬вание. Парафин особенно долго задерживается на эритроцитах и ядрах клеток. Для того чтобы полностью удалить парафин из срезов, рекомендуют провести их следующую обработку.

Ксилол 30 мин

Спирт 100% 5 мин

Смесь метанола и хлороформа (1:1) при 50 °С 24 ч

Спирт 100 % 5 мин

Спирт 70 % 10 мин Вода

Следует также иметь в виду, что срезы, которые подвергают поляризационной микроскопии, не должны вступать в контакт с фенолами (например, их нельзя просветлять в карбол-ксилоле).






отравление этиленгликолем.

Краисталлы оксалатов.

Поляризационная микроскопия. Х200

отравление этиленгликолем.

Кристаллы оксалатов.

Поляризационная микроскопия. Х400







Яндекс.Метрика